New Stroke Treatments and Inter-facility Transport

David Y. Huang, MD, PhD, FAHA, FANA, FAAN Professor, Department of Neurology Director, UNC Health Care Comprehensive Stroke Center The University of North Carolina at Chapel Hill

Ischemic Stroke Treatment Toolbox

IV Therapy Alone

Combination Therapy

IA Therapy Alone

Results of Recent Interventional Treatment Trials: Better Functional Outcomes at 90 Days

		IV tPA	treatment	advanced			
	# patients	(%)	initiation (h)	imaging	mRS <= 2 (%)	sICH (%)	Mortality (%)
MR CLEAN	500	89	6	no	32.6 vs. 19.1 *	7.7 vs. 6.4	18.9 vs. 19.4
ESCAPE	315	76	12	yes	53.0 vs. 29.3, p<0.001	3.6 vs. 2.7	10.4 vs. 19.0, p= 0.04
EXTEND-IA	70	100	6	yes	71 vs. 40, p=0.01	20 vs. 9	0 vs. 6
SWIFT PRIME	196	100	6	yes*	60 vs. 35, p<0.001	0 vs. 3	9 vs. 12
REVASCAT	206	73	8	no	43.7 vs. 28.2 *	1.9 vs. 1.9	18.4 vs. 15.5
THRACE	414	100	5	no	53 vs. 42, p=0.28	2 vs. 2	12 vs. 13

Time to Reperfusion Impacts the Likelihood of Functional Independence in SWIFT PRIME

Time from onset to reperfusion (min)

DAWN in Full Daylight

<u>D</u>WI or CTP <u>Assessment with Clinical Mismatch</u> in the Triage of <u>Wake-Up and Late Presenting Strokes</u> Undergoing <u>Neurointervention with Trevo</u>

Tudor G. Jovin MD & Raul G. Nogueira MD on behalf of the DAWN investigators

Study Methods: Workflow

Primary outcome

73% relative risk reduction of dependency in ADL's NNT for any lower disability 2.0

90 Day mRS 0-2 by TLSW to Randomization

DAWN: Implications for Interventional Centers

- Heretofore, there has been no acute treatment for such patients, and the majority of these patients are never referred to an interventional center
- Selection requires imaging that most hospitals are not capable of doing at this time
- Moreover, most interventional centers currently do not have the imaging software needed to determine eligibility, so patients may only be able to get this intervention at a subset of current interventional centers
- The study has not been published, but we suspect that groin puncture must be done within 60-90 minutes of the selection imaging, so we will not know if a patient is eligible until AFTER he/she is transferred to a capable interventional center
- We have no idea of how many people need to be screened to have one eligible patient
 - Increased transfer volumes will tax an already overloaded system

Stroke Systems: Hubs and Spokes in the Era of IV Alteplase

Stroke Systems in the New Age of Interventional Therapies: Greater dependence on interventional hubs and inter-hospital transport

Intervention-Capable Stroke Centers in NC (2017)

Legend

County with a NCSCC hospital

County with no hospital

Note: Data are from NC Stroke Care Collaborative. *Data from 6/35/2012

- ★ Interventional capable PSC (2017)
- ★ AHA/TJC CSC pending (2017)
- ★ AHA/TJC CSC (2017)

Department of Neurology

UNC IA Protocols: Metrics Developed & Goals Set

Activation/Pre-Arrival

- Patient Origin OSH, ED, Inpatient
- Transfer Center call time
- Transport Method
- Code IA Activation "auto-launch"

Arrival

- Door Time
- CTA Order, Read
- Decision

Treatment

- Groin Puncture Time
- Sedation/Anesthesia
- Treatment Type

Goals: Door-to-Groin: <u><</u>60 min Door-to-Device: <90 m

- TICI Score
- Complications

Actual (CY 2017): Avg Door-to-Groin: 30 min Avg Door-to-Device: 57 min

The UNC Experience: Code IA Stroke Transfers

- 60% of our Code IA Stroke activations are transfers
- Of transferred patients
 - 71% received IV alteplase prior to transfer
 - 22% had a CTA performed before transfer
 - Only 39% of transferred patients were actually eligible for intervention upon arrival
 - 71% of patients with a pre-transfer CTA went to intervention
 - Only 30% of patients without a pre-transfer CTA went to intervention
 - Reasons for exclusion: no proximal occlusion (62%); arrived at UNC outside of treatment window (16%); significantly improved (13%)
 - Referring hospital door-in-door-out (DIDO) in hours, median (IQR)
 - 1.8 (0.4-2.7) intervention
 - 1.7 (0.8-2.6) non-intervention

Hurdles to Reducing Onset-to-Intervention Times in New Systems of Stroke Care

- Hubs (CSCs and Interventional-Capable PSCs)
 - 12 hospitals in NC capable of advanced interventions
 - cost prohibitive for most other hospitals
 - Not all Hubs offer 24/7/365 access
 - Limited bed availability force some Hubs to divert
 - Goals
 - improve access
 - streamline referral process
 - help referring hospitals select patients eligible for intervention
 - education for referring hospitals and transport agencies
 - improve notification methods when on divert
 - Important for inter-facility transfers as well as initial transport of patients
 - "autolaunch" capability
 - reduce door-to-device times
 - prepare for the eventuality of DAWN-eligible patients

Hurdles to Reducing Onset-to-Intervention Times in New Systems of Stroke Care

Referring Hospitals

• ASRHs or other stroke capable hospitals

- IV alteplase patients are generally transferred out
- May have limited awareness of potential interventional opportunities
- Most do not have ability to perform emergent CTAs
- PSCs
 - Usually keep uncomplicated IV alteplase patients
 - Many but not all perform emergent CTAs
- Goals
 - Improve door-to-needle times for IV alteplase
 - Improve door-to- transfer request times by developing rapid referral protocols
 - Know your Hubs: who, when, and how
 - Reduce the number of transfers to Hubs who do not require complex care
 - Develop CTA protocols and work with Hubs to upload images for review
 - Improve DIDO make sure patients are ready to go as soon as transport arrives

Hurdles to Reducing Onset-to-Intervention Times in New Systems of Stroke Care

Transport systems

- Air Transport
 - The desired mode of transport for code IA, if available
 - Generally owned and operated by the Hubs' health care systems
 - Mutual aid assistance commonly needed
 - Weather a major factor in availability
- Ground Transport
 - May be faster than air transport if vehicle is already at the referring hospital and distance to Hub is short
 - Most transports are done by units owned and operated by health care systems (both Spokes and Hubs)
 - Mutual aid sometimes needed and is sometimes provided the local government EMS services
 - Heavily affected by traffic delays
- Goals
 - Continue to work collaboratively to provide fastest transports possible
 - Be aware of each Hub's patient protocols (pre-notification, delivery point, etc)
 - Collect and review data on Code IA transport volumes to help determine the current and future resources needed
 - Be proactive in planning for increase stroke transport volumes

Proposed Next Steps

- Continue current SAC dialogue: Integrating and Accessing Care
- Encourage each Hub to begin dialogues with their referring hospitals and transport systems
- Provide education government and health care leadership on the current issues and needs
- Organize a meeting (SAC, Hub leadership teams, NCHA, NCCEP, NCOEMS, NCDHHS, Critical Care Transport leadership, others) to continue dialogue on a larger scale

American Heart Association American Stroke Association CERTIFICATION

Meets standards for Comprehensive Stroke Center

